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SECTION I

INTRODUCTION

‘Two separate but related efforts are described in this
report. The first and more significant effort is a demonstration
of the capability of the patch zoning method for numerically
solving the magnetic field integral equation (MFIE). This is
accomplished by comparing experimental data with numerical
computations of the current density induced on metallic struc-

tures. The most immediate impact of this capability is its
effect on determining the potential and limitations of experi-

mental procedures.

The structures that were treated numerically and experi-
mentally are an aircraft model in free space and a metallic
cylinder of finite length in free space and also above and
parallel to a metallic ground plane. The experiments were
performed at the University of Michigan by Valdis Liepa and
his associates under contract to the Air Force Weapons Labora-
tory.

The secondary effort is a derivation of the electric field
integrodifferential equation (EFIDE) and the MFIE for electro-
magnetic pulse external interaction with perfectly conducting

bodies above a finitely conducting half-space. The relation-
ship between the two efforts is that the equations are repre-
sented in such a manner that the computational results, which
are compared with experimental data, are readily seen to

correspond to the numerical treatment of special cases of the
MFIE finitely conducting ground equations._

The derivation of the EFIDE and the MFIE, which include
lossy earth effects, utilizes the explicit representations of
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Green's dyadics given by Tai (ref. 1) after appropriately
accounting for missing terms (ref. 2). The results obtained
by the straightforward use of Tai's dyadic representations
contain infinite sums of infinite integrals. We introduce a
procedure that primarily consists of a coordinate change that
reduces these sums to finite sums of well studied Sommerfeld
integrals. The reduction of the infinite sums to finite sums
was not unexpected since we could have obtained the same
results by appropriately combining vertical and horizontal
dipole solutions.

To enhance the utility of our equations, we change Tai's
notation to that of Banos (ref. 3) after the infinite sum
reductions. We do this for two reasons. First, Banos presents
a detailed theoretical investigatior of the resulting Sommer-
feld integrals. The other reason is that the work of Lytle
and Lager (refs. 4, 5) uses Barios notation and it contains com-
puter codes for the evaluation of the Sommerfeld integrals.

The recent work of Haddad and Chang (ref. 6) also contains both
theoretical and numerical work related to the evaluation of
the Sommerfeld integrals.
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SECTION II

PRESENTATION OF UNSIMPLIFIED REPRESENTATIONS
FOR E(r) AND H(r)

For the purpose of this analysis it is convenient to divide
our volume of interest into two regions (fig. 1), Ve and VC'
VF is the volume bounded by the surface of the object, S, the
interface surface, Sg» and the upper hemisphere at infinity,
SFm. VF includes the volume VJ over which the source J(r) is
defined. VC is the semi-infinite volume bounded by Sg and the
lower hemisphere at infinity. The equations satisfied in each

region are

v x Ej(x) = iwuy Hy (D) rev, (1)

<]

x Hy(r) = -iwe  E;(x) + J(¥) 5 €Y (2)

and J(r) = 0 unless r ¢ V;. The equations in V. are

Vox Ej(x) = iwpg Hy(@) r €V, (3)
V x Hy(x) = -iwe E,(r) r € V. (4)
where ¢ is a complex function of w [(i.e., € = ER(w) o= ieI(w)] to

account for the fact that the half space VC is lossy and
frequency dispersive. Combining equations 1 and 2 we obtain

Lp E;(®) = iwuy J(X) (5)
where
L, =7 x 7 x =k (6)
F o)
7
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and

Similarly combining equations 3 and 4 we obtain

LC Ez(g) =0 (7)
where
2
Lg = Vx Vx-k (8)
and
2 2
k wou e, (9)

Next we introduce the Green's dyadics that satisfy the equations

Lp 8(zy) = T 8z - ) L.r, € Vg (10)
and
Lo Ga(ziz ) » T 802 - 2.) eV
€ 2 =0 =0 T e VF' (11)

Next we use the dyadic identity for an arbitrary vector a and
dyadic A found in reference 7. That is




[{(Vx(Vx_a_))°1=5:-§_'(Vx(VXK))} dv
af{(axé).(vXK)+(ax(Vx_a-)) ~;}ds (12)

where V is an arbitrary volume bounded by the closed surface S
which has an outward normal n. By adding and subtracting either
-kgg - A or -kzg - A the identity (eq. 12) can be expressed as
either of the following two identities.

[{(LFQ) cE-a - QD) Qv
S

= ’/g(ﬁ x a) « (V x A) + (ﬁ % {7 % gy} ~ & }ds (13)
: .

./-{(ch) A -a - (LCK)} dv
=[{(ﬁx§_) - (7 xK) + (n x (7 x a)) -K}ds. (14)

We now employ equation 13 where a = E;(r) and A = 51(5,50) and
vV = VF' Using equations 1, 5 and 10 we obtain

E(ry) = Ep(zy) + Ig + Igp; * Igre (15)

TP R




where

Er(zy) / (iwuo)(g(z) 4 El(g.go)) dv
v
J

I = iwug [(ﬁs(g) x H(r)) - Gy(r,ry) ds
) |

7]

Isre °/ {(ﬁw(z) x Ey (D) - (v G, (z.r))

SFx

+ dung (A x B @) - & @)} d

Lo ™ -./.{(831(5) X 51(5» g (V % El(E-Eo»v

Sp

and ﬁs(g) is the outward normal to S. Similarly, employing

equation 14 for a = E,(r), A = Ez(r,

b o 50), V = Vo and using

equations 3, 7 and 11 we obtain

/(§2<-r-) - (T s - Eo))) GV = Lopy ' 2ste
Ve

where

gy = - [{Ag,® * E,@) -+ (7 x Ey(zry)
S
B

+ Lung Ay * By(©) - Tz} 4

11

(19)

(20)

(21)




lSCm - .f {(ﬁm - ..E_Z(E)) 8 (V x -G-Z(E,_l:o))
SCw

+ dun, (A, x Hy(@) -+ &y(r,r)} ds. ' (22) |

We now simplify equations 15 and 20 by employing the boundary
conditions satisfied by the fields and the Green's dyadics. First

? we note that I, = 0 as a result of the radiation condition and
: Isce = 0 as a result of the exponential decay due to losses (the

radiation condition would be sufficient if e were purely real). F
’ Next we note that the volume integral in equation 20 is zero

because the integration is over Ve and according to equation 11,
r, € Vp. Combining these results we can write equations 15 and

—o
20 as
F ==
E(ry) = Ep(xr,) + iwu, f{s(z) + Gy(z,r,) dS + Igpy (23) ;
S
and

l ISBZ =0 (24)

4 where wé have used equation 17 and the definition

J (x) = a (x) x H(x). (25) ‘

We now use the fact that n x E and n x H are continuous across the
interface and that 61 and 32 are chosen with this fact in mind in
order that LSBI = LSBZ which according to equation 24 equals

zero in order to write equation 23 as

E(r,) = Ep(xy) + 1wy, f_{s(g) - Gy(r,r ) ds. (26)
s

12
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We now return to equation 17 which combined with the information
contained in equation 26 enables the interpretation (and evalu-
ation for plane wave excitation) of §T(£o) without explicitly
performing the indicated integral over VJ. From equation 16 we
see that E.(r)) is independent of the surface S. From egquation

26 we see that by imagining S to vanish, ET(EO) can be inter-
preted as the total field, incident plus scattered, due to the

E lossy half-space with S absent. For an incident plane wave, gT(EO)
would be simply expressed (algebraically) in terms of the Fresnel
h reflection coefficients.

We now rewrite equation 26 with the following change variables
to conform to standard notation, i.e., I, is now denoted as r and

: r is now denoted as r'. The resulting equation is
b
E(r) = Ep(x) + iwuofis(g') - §,(',x) ds' (27)
S

which can be rewritten as

n
E(r) = ET(I‘) + iwyp fﬁl(_l_‘_',z) . QS(E') ds' (28)

where " denotes transpose. We now use the fact that

v
e A e (29)

where Egll)(g,g') is the notation used by Tai (ref. 1) and has
exactly the same meaning implied in that book. Combining equations
| 28 and 29 we have

E(x) = Ep(p) + 1wu016§11’<g.5') . g (e') ds', (30)
S

BLre = %




Up to this point, all of the work presented has been tutorial;
now we make our first significant point. As pointed out by Tai
(ref. 2), the dyadics presented in his book lack necessary terms.
His method of correcting these dyadics leads to expressions that
do not explicitly exhibit the best form for subsequent numerical
treatment. For the lossy half-space dyadic (and others as well)
we can express the dyadic as the sum of two terms

bl FOER ARl (31)

and the omitted terms were omitted only from EO(E'E')' the free
space Green's dyadic. By correcting EO(E-E') by supplying the
missing L related dyadic terms (or equivalently the missing &-
function term) we would end up with a representation for 50(5,5')
that would not be as useful for numerical purposes as the standard
representation that does not contain the L, M, and N related
dyadics. The following two observations are the basis of this
claim:

1) The expanded version of Eo<£’£') will always contain two
different representations that require separate numerical treat-
ment, depending on whether one of the spatial observation point
coordinates is larger or smaller than the corresponding integration

point coordinate.

2) The derivation of the integral equation in the magnetic
field case, or the integrodifferential equation in the electric
field case, requires that the limit be properly treated as the
observation point approaches the integration point on the surface
S. By expressing 50(5,5') in the standard closed form, we can
make use of existing analysis to treat this limit. With this as
background we have the following representations:

G (c.r') = ('1' - k% VV)g (32a)
o

14
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where

g = (4n|r - r'|) exp(ik lr - ¢ |)
and
e -4 [ L T e
€3 (EED =55 ]f "hy (2 = 80) {allyn, (MG
o n=0 a=e,O0
+ BN (N, (B
where
cos thyz 2
¥ Mgnk(hl) (& [] (Ar )51n ng el z]
Ne_.(h,) = 0= ¥ x Me_. (h;)
o= ko —onA 1
h1 + h2
2 2
_ kaBy = Kghy
e i
2 1 2
2
ko " ANty
k% = wzu €; € is the complex permittivity
of the lossy half-space
1/2
- (2 - )
hy (ko rE
1/2
15

(h

(32b)

)

(33a)

(33b)

(33c¢)

(334)

(33e)

(33f)

(33g)

(33h)

(331)
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and Gno is the Kronecker delta function. Implied, by the explicit
relationships presented in equation 33, is a coordinate system
having its origin at the interface between the semi-infinite
lossless half-space and the semi-infinite lossy half-space. The .
usual cylindrical coordinate system is employed with z being
measured as positive as the distance from the interface is increased
into the lossless medium. In summary, equations 28 through 33
present an explicit representation for the electric field, E(r),

off the surface S once gs(g) has been determined. A discussion
concerning the determination of an appropriate equation having

3 {s(g) as its solution will be given in subsequent sections.

b The equations that present an explicit representation for H(r) off

: the surface S, once J (r) is determined, are arrived at by taking
the curl of equation 28 and employing equation 1. The resulting

representation is

H(r) = Hp(x) + fii(z-s') ') 48 (34)
S

where

K(x,r') = v x 53(11)(5,5') (35)

and employing the same arguments that led to the interpretation
' of gT(r) without the explicit evaluation of equation 16, we can

interpret

By (D) = g 7 Ep(®) (36)

as the total magnetic field (ET(S)), incident plus scattered, due
to the lossy half space with S absent. For an incident plane
wave, ﬂT(E) would simply be algebraically expressed in terms of

Fresnel reflection coefficients.

We now simplify equation 35, to a limited extent, by straight-
forward substitution. In the next section we will simplify it

16
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a great deal more and discuss the numerical benefits of the form
we ultimately obtain. First we write

Ree) =R Ge.2’) + R z.2") (37)
where
B, = %28 e n™) =g %1 (38)
and
R, = v x &M@, (39)

with égil)(g,g') given by equation 33. Equation 39 can be simpli-
fied by employing equation 33c and the relationship

(h k M

7 ox Ney (hy) = klte, (h

en) 1) (40)

The expression obtained is

Al

iko md/\ ~ '
s (E.E') = —nfm;Z 2o @ o) fall g (il ()
(0]

n=0 a=e,0

! | /
+ B (DN, G 41)

The resulting expression for H(r) is

H_(}'_) ~ ET(E) 4 ﬁVg X :I-S(E')) ds’

(42)
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SECTION III

PRESENTATION OF THE ELECTRIC FIELD INTEGRODIFFERENTIAL EQUATION
(EFIDE) AND THE MAGNETIC FIELD INTEGRAL EQUATION (MFIE)
IN UNSIMPLIFIED FORM

The representation for the electric field off the surface is

given by combining equations 30, 31, and 32 to obtain
E(x) = Ep(@) + ioug ‘fg(lz - ') 3.€") ds’
S

Y

+
k2
O

f‘”’g . J_(z') dS' + fc“‘:§sll’<z,£'> C (") it
S S (43)

We take the cross product of both sides of equation 43 with 5(5)
where r is the point on S approached by the r in ‘equation 43

which was a point off the surface in that equation. We also

consider the behavior of the second integral in equation 43 as
the volume observation point approaches the surface. (The behavior

of the other two integrals requires no special treatment.) The

behavior of this limit was treated in reference 8 and we can
directly use those results by employing representation 31.
1 Finally, by following the described steps and employing the

boundary condition

n(r) x E(x) = 0

It
m
wn
~
£~
>
~

we obtain our unsimplified EFIDE

18
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-G(E) X §’r(£) = iwuo ;\(E) X lfg “_r_ = E' I) ‘ls(zl) ds'
S
+ L:I_S(E') + fcgl-l)(g's') . ls(E') ds';
S (45)
where equivalent representations of L are
. k,z,kls(s') - - fs(ls - ') I (") ds (46a)
? S
. vfg (lz - ' ))v - 3, as’ (46b)
!
- fre(z- e - L@ o (46c)
-fsl_r_ - x| vV oe I (x') ds! (46d)
f » vas (lz - z'l) - I (") as' (46e)

| ‘ and the principal value sign is only employed when it is
"1 required.

The MFIE is obtained by taking the cross of both sides of
equation 42 with the n(r) just described. We also consider
the behavior of the first integral in equation 42 as the volume
observation point approaches the surface. This limit is
precisely the one treated in the free space MFIE and its
result is known. The second integral in equation 42 requires
no special treatment as the volume observation point approaches:
the surface observation point. Again, this is a major
benefit of the Green's dyadic representation 31. The




MFIE resulting from taking the described cross product and
limit is

£(2) J(r) = A(x) x Hp(p) + f{ﬁ(s) x (vg x 3(z")} ds*
S

+ f{ﬁ(g) « B (e.2"y = 3073} a8 , (47) E
S

where we have used the definition (25) and dropped the sub-
scripts on J(r). The f(Q) comes from the limiting process
associated with the first integral in equation 42 and is

£(Q) =1 - Q/4r (48)

| where Q is the solid angle subtended by the surface S at r.
If we don't choose r at a discontinuity in curvature, then
Q = 27 and f(Q) assumes the value 1/2 which is usually seen

in the magnetic field integral equation.
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SECTION IV

DERIVATION OF THE TRACTABLE FORMS FOR THE EFIDE 5
AND THE MFIE

An examination of the EFIDE presented in equation 45 and L
the MFIE in equation 47 reveals that the subsequent numerical
treatment of either of these equations requires the treatment
of an infinite sum of infinite integrals. This is the case |
because equation 45 contains agil)(g,g') defined by equation 33 |
and equation 47 contains Ks(g,g') defined by equation 41. The
objective of the work presented in this section is to derive ]
new exact representations for fgil)(g,g') and fs(g,g') as finite
sums of demonstrably convergent integrals. These new represen-
tations when substituted into equations 45 and 47 constitute

the tractable forms for the EFIDE and the MFIE.

The method of obtaining the simplified forms relies on

the interpretation of the r and r' that appear in Egll)(g,g')
presented for the first time in equation 29. After the change
in variables and transposition, then Eéll)(g,g') satisfies the
equation

Ve ¥ B e ety - s B

(r,2') = Ts(z - ') (49)
where the derivatives associated with the curl operator are
with respect to the r variation, and the boundary conditions at
infinity and at the interface are applied to r approaching
infinity and r on the interface. This interpretation means
that r' is not required to vary for representations 33 and

41 to be valid. Even though r' is not required to be a
variable for those representations, the application of those
representations, for example equations 45 and 47, do require
that r' be a variable point that has no particular restrictions.
We use these facts in the following manner. First consider

that we have a fixed coordinate system in which r and r' are

21




radius vectors to the observation point and source point
respectively. Next, consider that we have another coordinate
system in which the radius vector to the observation point

is denoted as r, and the radius vector to the source point is

denoted 56. T;g subscript D is employed to indicate that

the second coordinate system is oriented in a special manner i
with respect to the delta function that appears in equation 49. :
The relationship between these two coordinate systems will now

be described with the aid of the following figure.

Figure 2. Coordinate Systems ]

The origin for both coordinate systems is on the interface
and z and zpy are measured positive as the distance normal to
interface increases into the lossless medium. The reason
that the subscript D is employed can now be explicitly

stated as

E g S L
i.e., D refers to the fact that in this coordinate system,

the origin lies directly under the delta function source.
The reason for introducing the D coordinate system is that

22




Ip and gé satisfy the described requirements for equations

33 and 41 to be a valid representation in that system. Upon
using this special representation for 56 we will find that
the infinite sums in equations 33 and 41 reduce to finite
sums. After obtaining the simplified representations for
§§il)(gD,Eb) and K_(z;, r})) we are not in a position to use
the representations in equations 45 and 47 because ry is not
free to vary in the D coordinate system. We obtain our
simplified representations that can be used in equations 45
and 47 by explicitly performing the substitutions implied by

the following equations

a0 @, xy = T (rpr), ) (51)
Refm2')y = E 2oy, 5i(e.2") (52)

with the relationship between the coordinates (see fig. 2)

given according to

op =20 - o (53)
zZy = 2 (54)
25 = 2" (55)

We will now present explicit results obtained by following
the described procedure. First we note that for 56 given by
equation 50, the only M| ,(h;,rp) and N' ,(h;,zy) that are
nonzero are the following

23
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M!,(hyLzp) = - 3 oih1z’ .,
Mopa(hy Ip) = % elh12’ 3
Nior(hyp-Ip) = i; oih12’ az

(o]
Noi,(hyozp) = 4 Zi; eih1z’ 3
g-c')l)\(hl'l'f)) =1 ;% eihlz' ;y

Accordingly equations 33 and 41 reduce to the following

finite sums in the D coordinate system

=(11)
G3s (

R SA
Ip.Ip) a-,rf *hy 2

@x

a(Mg1p (hy xp) Migy By Ep)

(o)

+ Mo, (hyEp) Mg, (yxp))

1 . :
i b(f Neor(R1-Ep) Neok(hl'zD)
* Ne1a(hy+Ep) Nepy (hy Ep)

|

+ Ngpy (b0 2p) y—él,‘\(hl'zl')))‘

24
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(56)

(57)

(58)

(59)
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el

and

Repomp) = 7w | 3m; Ia(uemhl.sD) ML, (Byzp)

+ Nopy (hyaxp) MYy, (hy o))

1 ’ :
* b(f Meox (Ry+Zp) Negy (hy.xp)

+ Mo (hyozp) Noyy(hyzp)

Moy (hy o2p) Nélx(hl'Eb))‘ (62)

The remaining expressions necessary to make equations 61
and 62 explicit are given by

A

ih
Meor (B Ep) = ATy (Rep) €717 3 (63)
J: CApe) ) B}
Moy (hyoop) = - ———2= sin ¢ e'P1Z 4
D D
J, (Apg) .
g Rulien) A dhiz =
+ ( o XJO(XDD))cos ¢o e a¢D

(64)

25
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M

—olx(hl'ED) =

Heok(hl'ED)

Neya(P1-Ip)

No1a(hy-Zp)

in conjunction with

|
! To obtain 535(5,5')
|
!
i
i
F

J; (App)
L*"*D ihiz »
o cos ¢p e app
J, (Aop)
1 D ih12z
(——7;——- - XJO(XOD)) sin ¢ e 1 a, (65)
D D
2 h,A .
A ih1z ~ 1 ih. 2z «
2e J (Apy) e 1° a i J,(Ap,) e1
ko o D : Eo 1 D °p
(66)
Az ih1z 2
K; Jl(AoD) cos ¢D e a,
ih Jy (App)
1 1 D ihjz -
— I\ J_(App) - ———]cos ¢, e a
ko ( o D °p ) D OD
ih, J, (A pn) o
1 L D ’ ihiz =~
sin ¢, e 1% a (67)
k, fp D b
AE J, (Appy) sin ¢ e*0LE 2
ko 1'4fp D z
ih J1 (Xon)
1 1 D : ih1z =~
—= (AJ _(Apy) - sin ¢, e a
ko ( o D OD ) D p
ih, J; (App)
P T ih1z 2
cos ¢, e a (68)
ks, fp D )

and ?S(E,E') we use prescriptions 51 and 52
transformation equations 53 through 55 and

= - '
pp=lg=-2'l
A p - B.
apD = (69)
Pp
a, =a_ xa
% z o
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We are now in a position to rewrite the EFIDE and MFIE
operators as the sum of three terms as we stated in the abstract.
The first term describes free-field interaction, the sum of the
first two describes interaction above a perfectly conducting
ground and, naturally, the sum of all three terms describes

interaction above a finitely conducting ground. The corresponding

decomposition for the source term will be given in the next section.

Equations 31 and 37 represent the first stage of the decomposi-
tion, i.e., the free-field interaction term has been separated
from the scattering form. Thus we must further decompose the

scattering term. Recalling equations 61, 62 and subsequent

Y 3 ~ ' 7 ' 3
equations 63 through 68 we can cast G, (r,,ry) and Kg(ryrzpy) into
the following forms

E . ’ e ~ ~ ~ A ~ ~
3s(£D ED) G3scs apD asD A G3s¢¢ abo aaD . G3SOZ acD 2z
G3szo z apD G3szz z %z (7
K (B B0y St e g R &, W, =R B @
S ==} S0 “b DD sop b °p sz z D
+ K a, a (71)
soz by 2
where
2
1 |a 2 2 :
£ - - 72
3500 Tl = Y By Vgt BTNy Ny S Hda
4Tk 3p
& L D
O T 2 2 (72b)
G et i i e k- Vaal + K (=G, + U q
3so9 4nko L °p aoD 2k o 22 o 21 22
= =G

3sz0 (72c)




2
3 ) 2 2
G = — + k (=G + k© V,,) (724)
3szz 4“k§ [(322 o) 21 22 ]
< 3 1.3 i 1 .8
2 |
e K A R ‘
Ksop = 77 {az (=Gaq * Uyp) =~ =3 wzz] (72£) ;
ap !
. s
{
Koo = o 5o (=Gpy * Upy) (729) |
szd g 33; 21 22 9 '
|
" K =i[a(c -x2 v, 72 |
soz - 7 LTog ‘C21 22 LS ;
where
eikOR+ © ieihl(z+z')
G21 e gumling e JO(AOD)A dA
+ 1
o
(73a)
R, = [(z + z')2 + DS]I/Z
o ih, (z+2"') i
- |
, v = J_(Ap=)A @X (73b) {
22 kzh + k2h o D |
‘ o) 1 o2
x © Ihs (22"}
U, = 2is_ I_(Ap) A @) (73
22 R, * h ofAPplA dA c)
2
fo}
) |
& 1hl(z+z')
2(hl = h ) e
w22 = p k2h Jo(AoD) A dA (734)
o 1 o 2
{
The above integrals are well studied and can be found in reference
3 where the same symbols are used with a slightly different but
equivalent representation for the integrands. |
4 s ?
{
! |
-‘ i"\," n S A ”




To proceed with the decomposition we consider the limit as

conductivity o of the ground becomes infinite. One can show that

lim W,, =

lim U =0, lim V = 0,
i 22

: 2
lim k™ V = 2G
k+x 22 K+ 22

o 22 21

and equations 72 in this limit becomes

2
P BRI | d 2
“3s00 T 7 2 [(a 2 " k°) GZl] doias
o ’p
P 1 (1 3 2) ]
G = — + k G (74b)
b 4nk2l Pp °Pp e
o
2
P 1 [ 8 P
G = G = G (74c)
3spz 4"k2 op,, 02 21] 3szp
. e (22 +x%) G (74d)
3szz 2 2 o 21
4tk Laz
o
G
p ) Sl ) G,
l KSD® wl ek KS®D (74e)
i .
G
P v b ed T )
sz¢ ~ ~ @7 3o, Ksoz (74f£)
where the superscript P means perfectly conducting. By
regrouping terms in equations 72 and utilizing equations 74,
we obtained the following decomposition
G3S = G3s + Gig (75)
= =p _ =F
K, =& + &, (76)
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o ; ﬂdn-m—n-n-w——wq‘
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where the elements of EP and ?P are given by equations 74

=F 3s s

and the elements of G3s and ?g (F stands for finitely conducting)

are given by

2
3%y
F 5., 5.0 [3°V,,
C3spp = 7w o e Uzz] (77a)
(]
L 98p
[ Vv
F o T
Gis00 = I W + 022] (77b)
F 1 32 2 F
G = S P - = -G 7
3spz 4nkg 70, 9z ( 22 ~ 2Gy;) 3820 (77}
Cogpy = —— 3 k2 )o? v, - 26, (774)
3szz 2 o 22 21
4ﬂko 9z
R
F 1 8% . 4 B
K - = | ¥ it b (77e)
sp¢ 4n L 9z °p apD ZZJ
U 2
R o
Koo = 47 [Tz ~ .2 wzz] (T7£}
o
i D
U
" BRI W
P e (779)
D
- SRR | % S
Kgoz = 1= T (26,, = k sz)]' (77h)

Thus by invoking equations 31, 37, 75 and 76 we can complete the

promised decomposition:

= _ = =P =F
Gag ™ Vg By, * CGig $2%4
Py == = ;-P —F
B ® K, * 8 * K, (79)
30
il
w. Y4 -




{ where Eo' io are given by equations 32 and 38 respectively, the
elements of Egs and ?z by equations 74 and the elements of
=F =F

G3s and KS by equations 77.

As a check to the above calculations we should arrive at

equations 74 by employing the standard forms for &% and ?P.
These represent the scattered parts for interaction above a
perfectly conducting ground and are given by the well known

expressions
EP = (I # 1 YW= =g (2" > =-2'") I +24 a4 g. (z' ~+ -z')) (80)
, s =7 2 % = z "z "o
K o
v K =-1 vg I
: s 4n o ) 5 (81)

where 8 is the free space scalar Green's function given
! by equation 33, G21 is defined by equation 73a and ?r is a reflec-

tion operator given by

= A A

TR i el B Roans }
r °p Pp ¢D¢D z 2z 3

It can be shown by some rather lengthy algebraic manipulations
*4 that equation 80 is identical to equations 74a through 744 and

equation 81 is identical to equations 74e and 74f. 1




SECTION V !

REPRESENTATIONS FOR ET(E) AND ET(E)

Using equation 16 in conjunction with the coordinate

notation changes described to obtain equation 27 and equation
29, we obtain |

(£) = iwu fEéll)(E,g) . J(x') av' (82)

Vg

Eq

and using equations 35, 36, and 82 we obtain

H,(r) = f?(g,g') « J{x*) av', (83) <

v

As discussed in the previous section, ET(E) and gT(E) have

meaning in their own right, independent of their role in the
appropriate EFIDE or MFIE. They are the total electric and
magnetic fields at any point r in the lossless medium due to

a specified source distribution J(r'), r' € V and equations

! 82 and 83 include all interaction with the loisy half space.

4 The work presented in the previous section enhances the utility
of equations 82 and 83 in that the form to be used for Ggll)(g,g')
is the simplified form given by equation 78, while the form to

be used for ?(5,5') is the simplified form given by equation 79.

If we now focus our attention on the role of E,(r) and Hy(r)
in the EFIDE and MFIE then we consider two cases. The first case

is when we desire to calculate the surface current density

induced on the scattering body and the source of excitation is

a specified distribution of current that exists somewhere in the
§ lossless medium. For this case we must employ equations 82 and
83 explicitly in conjunction with the EFIDE and MFIE. The second

e e —
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case 1s one of considerable interest. This is the case when the
source of excitation 1is an incident plane wave. For this case
we make use of the fact that gT(E) and ET(E) are simply the
incident plus reflected fields from the lossy half-space and
we do not have to explicitly evaluate equations 82 and 83.

For completeness we will present explicit representations for
this case. These representations are obtained in the standard
manner in which the incident field is decomposed so that it

1s the superposition of two component fields. One component
field has its electric field polarized perpendicular to the
plane of incident, and the other component field has its
magnetic field polarized perpendicular to the plane of inci-
dence. The analysis leading to the results is straightforward
after the described decomposition is employed. For an inci-
dent field given by

E. = & E elkolo’L (84)

with e being a unit vector along the polarization direction and

n, being a unit vector in the propagation direction, the total

fields are

g P F
Epn = E; +E +E (85)
and
D =
H. = H. +#+ H + H (86)
_T -1 - ==
where
A ~ ik naer
= . 070 = 87
H, (Ej/2 ) (ng < e) e (87)
5 P 5 A x Y : S \
EP J— [(e . f3f + (@ o v)(nR . h).elkonR r (88a)
- (o) J
33
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R R T G e .

F ¥ o . A - < ~ . A ~ A »
Ef = EO[(RH +1)(6 - hh =(R, - 1) (& + V) (Ag * h)]
oikoNR T (88b) |
P & #y= o s~ 8] ik Ager
H =-(E/2)) |(e « h)(ng x h) - (e « vihje™™© R = (88c)
B = (E/zZ) [‘Ra +1)(e » h)(ng x h) + (R, - 1) (e V)‘nJ
o FoPRE (88d) !
: A, x &, Fs
h = 2 (If n = -a_ then h = a_ )
- 5 "
n X a
o] 4
v =hxng (89)
g ® 0, Y AL =~ Ja.8.)
;O Al |
- A . I - = B 2\1‘/‘
B xo(az no) {x koll (aZ wo) |
" e [ 2 2 ~ 2y]1/2
~k, (a, ° qo) 4 R - koxl - (az no) )J
(90)
2,4 NG A Sy ¥ YY) oA 2}1/2
RV . k (az no) Ko[‘ koll (aZ no) '
f 0 -
sl oA W SRS PR R T ]
K (az no) + kO[K ko1l (a2 n,l /]

RH and Rv are the usual Fresnel reflection coefficients

so the square root is defined to have a positive real part.
We note that as the conductivity of the half-space approaches

infinity, then RH + =] and Ry, ~ 1. It can now be seen that

in this limait EF and gF vanish and this was the reason for the

decomposition of E, and H, as expressed in equations 85 and 86.

— T
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The first two terms in these expressions represent the total
fields, incident plane reflected due to the presence of a
perfectly conducting half-space. The addition of §F and g?
to the "perfectly conducting" total fields, yields an exact
representation for the total fields, g? and g?, resulting from

the presence of the finitely conducting half-space.
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SECTION IV
COMPARISON BETWEEN NUMERICAL AND EXPERIMENTAL
DATA FOR METALLIC OBJECTS IN FREE SPACE AND
ABOVE A PERFECTLY CONDUCTING GROUND

In this section we compare numerical data derived via our
Magnetic Field Integral Equation (MFIE) Code to experimental
data obtained at the University of Michigan. The quantity of
interest is the magnitude of the current density induced on
metallic objects in free space and in the presence of a per-
fectly conducting ground by a monochromatic plane wave. In
particular we considered a perfectly conducting circular cylin-
der in free space and also above a perfectly conducting ground
and a perfectly conducting aircraft model in free space. Thus
figure 3 presents the comparison for the magnitude of the
induced current density as a function of kh (k being the free
space wave number and h the halflength of the cylinder) at the
two points P and Q indicated on the graphs. The incident wave
is polarized with its electric vector parallel to the axis
and the propagation vector k is perpendicular to the axis.

The agreement is generally very good. Notice that the peak
value obtained via the MFIE code is higher than the one
measured at the University of Michigan. This is in agreement
with the results obtained by Sassman (ref. 9) who calculated
the total current I as a function of kh. Sassman obtained
84a for the peak value of the I/HO and this should be sma;ler
than 2nalJpl/Ho since IJPI is maximum at P. The code gives
2ma|Jp|¥89a and the measured data gives 84a. (Figures 4 and 5
are taken from the University of Michigan report since the
solid curves in figure 3 are our smoothed out drawings for
the original graphs in figures 4 and 5 and as such they are
subjective.)
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In Figure 6 the cylinder is situated above a perfectly conduct~
ing ground with its axis parallel to the grourd. The incident
field is the same as in Figure 3 and the distance of the cylin-

der axis from the plane is 5a.

Again, Figure 7 refers to the original graph in the Univer-
sity of Michigan report. Figure 8 depicts the same situation as

in Figure 6 except'that the cylinder axis is much closer to the

ground. (Figure 9 is the corresponding graph in the University

of Michigan report.) Notice that the deviation near the two

¢ maxima 1s much greater than everywhere else. To satisfy our-
selves that the discrepancy between the experimental values

u of current density and the corresponding numerical predictions

were not the fault of the finite number of zones used to parti-

tion the surface of the cylinder, we systematically increased the

number of zones until we obtained what appeared to be a con-

verging sequence. For the cylinder in free space and for the

cylinder 5 radii above the perfectly conducting ground plane

we increased the zoning until for each frequency the response

was insensitive to zoning changes. However, the small change

in the predicted resonant frequency due to a change in zoning,

coupled with the sharp resonance for the case in which the

axis of the cylinder was 1.5 radii above the ground plane,

caused the abcve convergence criterion to be too stringent to
be practical for frequencies near this resonance; instead, in
this region, we required that both the resonant fregquency and

the peak value be insensitive to zoning changes.

The zoning scheme that produced the results found in
Figure 8 was 18 zones along the length and 10 zones around
the circumference, while for Figure 6 it was sufficient to use
10 zones along the length and 6 zones around the circumference.

In botl cases there was one zone along the radius of the endcap.
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Figure 10 1is a schematic for the aircraft model considered

at the University of Michigan the exact dimensions of which are
given in Table 1. The experiments were conducted with the brass
scale model; however, our graphs refer to the unscaled aircraft
dimensions given in Table 1. Figures 12, 14 and 16 present the
comparison for the magnitude of the induced current density
along the top of the fuselage for kh = 0.82, 1.694, 20.14, where
h is the fuselage halflength. Figures 13, 15, and 17 refer to

the bottom of the fuselage. The incident plane wave has its
electric vector polarized parallel to the fusalage and the
propagation vector perpendicular to the fuselage axis. The
distance £(in meters) shown in the graphs is the arclength

P defined in Figure 1l1. Notice that the deviation between experi-
mental and theorectical values on the fin (vertical stabilizer)
is much greater than on the fuselage. (In figure 13 our results
were off scale and are not shown.) A possible explanation for
this discrepancy may be based on the fact that the measuring
sensors are of finite size and do not pick up the fields right
on the surface. This is important because the elliptical cross

section of the fin has a ratio av/bv7¥6, i.e., the curvature

, about the points where the measurements were performed varies

F‘ rapidly and consequently the fields can change rapidly as we

k1l move away from the surface. This is at least true for the

'4 special case of a perfectly conducting cylinder of infinite
length and elliptical cross section immersed in a magnetostatic
field parallel to the minor axis. For this case we found that
at a distance (in the direction of the major axis) equal to

0.25 bvk 0.025 in (b, is the minor semi-axis) the azimuthal com-
ponent of the total magnetic field is equal to half its value

on the surface. The above discussion indicates that our

higher values on the surface of the fin may actually be compat-~
ible with the lower values obtained with the finite size sensors
which of necessity measure fields at points off the surface.
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Figure 10. Magnetic Field Integral Equation
Aircraft Model.




Table 1.

MODEL SPECIFICATION

U. of Mich.
Air Force U. of Mich. (scaled)
Parameter (meters) (meters) (inches)
L 40.00 40.00 6.847
Lg 16.76 16.76 2.869
L. 17.08 17.08 2.924
Lr 6.16 6.16 1.054
L, 18.11 18.11 3.100
Lh 4.22 4.22 0.722
Lv 6.5 6.5 S0 1 e
ag 1.85 1.83 0.313
a, 3.66 3.651 0.625
bv 0.73 0.634 0.109
ay 1.83 1.826 0.313
bh 0.37 0.317 0.054
a, 3.00 3.104 0.531
'bw 0.61 Q.537 0.092
47
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